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Abstract: The two most common methods for determining home ranges, minimum convex polygon (MCP) and kernel analyses, can be affected by sam-
pling intensity. Despite prior research, it remains unclear how high-intensity sampling regimes affect home range estimations. We used datasets from 
14 GPS-collared, white-tailed deer (Odocoileus virginianus) to describe the size and location accuracy of home range estimates calculated from differ-
ent sampling regimes. We compared monthly home range estimates from seven sub-samples (480, 360, 180, 90, 60, 30, and 15 locations) to the home 
range estimates of the complete datasets (720 locations). Minimum convex polygon (MCP) home range size estimates calculated from datasets with 
> 180 locations were not statistically different. Areas calculated with 60–90 locations may underestimate MCP size by 50% or more. As demonstrated in 
past studies, we found that kernel home range analyses accurately estimated home range size for all sampling regimes. However, considerable locational 
errors were associated with lower sampling regimes, resulting in misclassifications of areas of use and non-use. An average locational error > 40% was 
observed for our least intensive sampling regime, while sampling regimes collecting 480 and 360 locations had less than 10% relative error. Since GPS 
technology can generate large sample sizes, researchers should use kernel analyses because MCP ignores much of the data generated. Also, because 
significant location error may be associated with MCP home ranges calculated from small sample sizes, the results of many previously published studies 
should be interpreted with care. 
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Global Positioning System (GPS) technology has increased the 
accuracy and precision of animal location estimates and has al-
lowed researchers to generate more frequent and larger datasets 
that are useful in home range analyses (Girard et al. 2002). Re-
searchers often must consider tradeoffs between sampling rate and 
battery longevity when developing sampling protocols for long-
term studies. To determine optimal sampling rate and study du-
ration it is important to understand the effects of sample size on 
accuracy and precision of home range estimations. 

Minimum convex polygon (MCP) and kernel analyses, the two 
most common methods for estimating home ranges, are affected by 
changes in sampling intensity (Silverman 1986, Harris et al. 1990, 
Seaman et al. 1999, Powell 2000, Girard et al. 2002, Mills et al. 2006). 
Generally, ≥100 locations are required to accurately describe a MCP 
area, with <100 locations resulting in underestimations (Harris et 

al. 1990, White and Garrot 1990, Seaman et al. 1999, Powell 2000, 
Girard et al. 2002, Mills et al. 2006). However, kernel analyses are 
less sensitive to sampling rates than MCP estimators (Boulanger 
and White 1990, Worton 1995, Seaman and Powell 1996, Hansteen 
et al. 1997, Kenward 2001, Mills et al. 2006). Nevertheless, Seaman 
et al. (1999) and Girard et al. (2002) reported that smaller datasets 
tend to overestimate kernel home range size. 

Given the nonparametic nature of kernel range calculations, the 
number of locations needed to accurately describe a home range 
cannot be easily calculated, although the topic has been explored 
in depth without a consensus (Silverman 1986, Seaman et al. 1999, 
Girard et al. 2002). Under several restrictions, Silverman (1986) 
concluded that only 19 locations were necessary to accurately de-
scribe home ranges, whereas Girard et al. (2002) concluded that as 
many as 300 locations were needed. 
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Recent improvements in battery life allow GPS devices to col-
lect ≥24 locations per day for an entire year. Despite prior research 
on this topic, it remains unclear how high-intensity sampling re-
gimes affect home range estimations. Whether sampling rates of 
this magnitude can improve the accuracy of home range estimates 
has received little research attention. Mills et al. (2006) described 
the effects of varied sampling regimes on the home range estimates 
of wolves (Canis lycaon) in Ontario, Canada. They found an aver-
age of 127 locations was needed to accurately describe the size of 
MCP home ranges, whereas as few as 12 locations were needed to 
accurately describe the size of kernel home ranges. However, Mills 
et al. (2006) focused their analyses solely on home range size and 
did not assess the location accuracy of their home range estimates. 

Herein, we used datasets collected from GPS-collared white-
tailed deer (Odocoileus virginianus) to describe the effects of dif-
ferent sampling intensities on accuracy of home range size and 
location estimates.

Study Area
We collected datasets for our analyses at two study sites: Chesa-

peake Farms (CF) and the Great Cypress Swamp (GCS). Chesa-
peake Farms in Kent County, Maryland, was composed of 13.4 km2 
of forest, fragmented by agricultural fields. Great Cypress Swamp 
in Sussex County, Delaware, was 44.5 km2 of unfragmented forest 
surrounded by agricultural fields. Forests at both locations con-
tained tree and shrub species common to southern forests (Acer 
rubrum, Diospyros virginiana, Clethra alnifoia, Ilex opaca, Liquid-
ambar styraciflua, Liriodendron tulipifera, Pinus taeda, Quercus 
alba, Q. nigra, Smilax spp., and Vaccinium corymbosum). In ad-
dition, GCS had stands of Chamaecyparis thyoides and Taxodium 
distichum. Agricultural fields at both locations and surrounding 
them were used to grow corn (Zea mays) and soybeans (Glycine 
max). In addition to those agronomic crops, both locations had 
plantings of wildlife food crops including Lolium multiflorum, Sor-
ghum bicolor, Trifolium spp., and Triticum aestivum.

Shaw (2005) estimated the CF preharvest deer density at 33 deer/
km2. In 2006, the CF deer population had an estimated sex ratio of 
1.0:1.5 M:F (M. C. Conner, Chesapeake Farms, unpublished data). 
In 2005, GCS was reported to support about 36 deer/km2 (DNREC 
2006). A camera survey in 2006 estimated the GCS deer sex ratio 
at about 1:1. 

 Methods
Deer Capture and Handling

We fitted 14 female deer (≥1.5 years old) with Televilt Tellus Ba-
sic, 5H1D GPS collars (Televilt/TVP Positioning AB, Lindesberg, 
Sweden) during February 2006–August 2007. Four deer were col-

lared at GCS and 10 were collared at CF. We captured deer by dart-
ing or rocket netting. We used 3-ml transmitter darts (Pneu-dart 
Inc., Williamsport, Pennsylvania) with a 7.0 mg/kg Telazol (Fort 
Dodge Animal Health, Fort Dodge, Iowa)/6.5 mg/kg xylazine hy-
drochloride (Cervizine, Wildlife Laboratories, Inc., Fort Collins, 
Colorado) combination as an immobilization agent in our darting 
protocol. Deer captured in rocket nets were immobilized with a 
10.7 mg/kg ketamine hydrochloride (Ketaset, Fort Dodge Animal 
Health, Fort Dodge, Iowa)/2.2 mg/kg xylazine hydrochloride in-
jection. During immobilization, we monitored vital signs, treated 
minor injuries, lubricated eyes, and blindfolded each deer. We in-
jected 400 mg of tolazoline hydrochloride (Tolazoline, Lloyd Labo-
ratories, Shenandoah, Iowa) to reverse effects of xylazine. Animal 
handling procedures were approved by the University of Georgia 
Institutional Animal Care and Use Committee (#A3437-01). 

Telemetry and Analysis
We programmed GPS collars to collect and store locations in 

the form of X, Y coordinates. The collars were programmed to col-
lect 24 locations/day at equal intervals during the study period. 
Each collar was equipped with a remote-release designed to allow 
collars to fall from the deer upon activation at the end of our study. 
However, only two release mechanisms functioned properly (12 
failed). We subsequently retrieved each of these collars by harvest-
ing the animals. We used Televilt Tellus TPM Project Manager 
software (Televilt/TVP Positioning AB, Lindesberg, Sweden) to 
download the data to our computer. 

For our analysis, we included only data collected during August, 
September, February, and March. Data from other months were 
censored to minimize the effects of seasonal movements associ-
ated with breeding and parturition (D’Angelo et al. 2004, Tomber-
lin 2007, Kolodzinski et al. 2010). In total, we analyzed each of 33 
months of data for the 14 deer (23 from CF and 10 from GCS). 
Data from each month were analyzed independently. 

We grouped each month’s data into eight subsets to simulate 
differences in sampling intensities (i.e., 24, 16, 12, 6, 3, 2, 1, and 
0.5 locations/day). We grouped data within each subset into time 
blocks based on the average number of hours between sampling 
points. For example, 24 locations/day, 12 locations/day and 0.5 lo-
cations/day subsets were grouped into 1-hr, 2-hr, and 48-hr blocks, 
respectively. We then randomly-selected a data point from each 
time block for each deer to create the eight datasets. We therefore 
used all data points for the 24 locations/day dataset (720 locations) 
and created seven subsampled datasets by subsampling the actual 
dataset as described (480, 360, 180, 90, 60, 30, and 15 locations). 
Non-fix locations and locations with dilution of precision (DOP) 
values >6 were filtered out, yielding an average fix rate of 92%. 
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We used Home Range Tools for ArcGIS extension (Rodgers et 
al. 2007) to calculate a 95% adaptive kernel home range for each 
data set. The tool calculates href as the square root of the mean 
variance in x and y coordinates divided by the sixth root of the 
number of points (Worton 1995). Although this method may over 
smooth the distribution for animals that have multiple centers of 
activity, inspection of the location distribution of our study ani-
mals indicated this was not the case. Mean cell size was set at a 
mid-level resolution (70 x 70) because the overall home ranges 
were large and we were not investigating fine-scale movements. 
We calculated the accepted home ranges using the sampling rate 

Figure 1. Example of accepted (720 locations) and simulated (360 locations) monthly kernel home 
ranges and the resultant locational errors in home range estimations for a female white-tailed deer 
at Chesapeake Farms, Maryland, 2006. 
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Figure 1 Example of accepted (720 locations) and simulated (360 locations) monthly kernel 

home ranges and the resultant locational errors in home range estimations for a female white-

tailed deer at Chesapeake Farms, Maryland, 2006.  

 

 

Figure 2. (a) Average MCP home range size estimates and (b) average kernel home range size estimates by sample intensity for 14 female white-tailed deer at Chesapeake Farms, 
Maryland, and the Great Cypress Swamp, Delaware, 2006–2007. Error bars denote 95% confidence intervals.

of 24 locations/day (720 locations) and the simulated home ranges 
from the seven subsampled datasets. We also calculated accepted 
and simulated MCP home ranges with Hawth’s Analysis Tools for 
ArcGIS (Beyer 2006). 

We compared simulated home ranges to the accepted ranges 
and determined areas of under- or overestimation (Figure 1). 
We expressed the area of locational error as a percentage of the 
simulated home range size ([underestimation area + overestima-
tion area]/simulated kernel area*100). We examined the changes 
in home range size and error for each of the sampling rates. We 
determined statistical differences by the non-overlap of 95% con-
fidence intervals. 

Results
MCP areas calculated from datasets with sampling rates >6 lo-

cations/day (>180 locations) were not different from the accepted 
home range size (95% confidence intervals overlapped, Figure 2a). 
The average MCP size increased more than five times between the 
least and the most intensive sampling regimes. All errors in MCP 
ranges were the result of underestimations of home range size. Er-
ror rates tended to increase as sampling rates decreased (Figure 3a). 
We observed errors as high as 80% for our least-intensive sampling 
regime. 

Kernel home ranges did not differ statistically (Figure 2b). 
However, locational errors in kernel area tended to increase as 
sampling rates decreased (Figure 3b). The shape of kernel home 
ranges became less stable as sampling rates decreased, resulting in 
higher locational errors. Most of the error was a result of overes-
timations, but as sampling rates decreased, the destabilization of 
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home range shape resulted in an increased ratio of underestima-
tion errors (Figure 4). Sampling regimes collecting 16 and 12 loca-
tions/day (480 and 360 locations) had <10% locational error rela-
tive to the accepted home range, whereas locational errors >40% 
were observed in the least intensive sampling rates. 

Discussion
Similar to other studies (Harris et al. 1990, White and Garrot 

1990, Seaman et al 1999, Powell 2000, Girard et al. 2002, Mills et 
al. 2006), our results demonstrate that MCP home range size es-
timates are sensitive to changes in sampling intensity; whereas, 

kernel home range size can be accurately estimated with only a 
few locations (i.e., 15). In addition, although kernel home range 
size can be accurately estimated from relatively few points, a more 
intensive sampling regime is required to correctly classify areas of 
use and non-use.

As mentioned by Mills et al. (2006), these findings suggest that 
care should be used when interpreting the results of studies that 
used MCP analyses of low-intensity sampling regimes (often asso-
ciated with radiotelemetry) as well as studies that compared home 
ranges calculated from datasets with different sampling intervals. 
However, we found that the effects of low-intensity sampling re-
gimes are more severe than Mills et al. (2006) suggested. Past stud-
ies that used sampling regimes of two–three locations/day (<90 
data points) may have underestimated MCP areas by more than 
50%. With the same sampling interval, kernel area size will be ac-
curately estimated but areas of use and non-use may be misrepre-
sented by 30% or more. 

The number of points needed to accurately describe an animal’s 
home range is undoubtedly linked to the behaviors of individual 
species and the precision requirements of the study. Regardless, 
as sampling regimes become less intensive, areas of use and non-
use may be misrepresented in home range estimates. Although the 
consequences of low-intensity sampling regimes may not be as sig-
nificant for populations of white-tailed deer, greater repercussions 
likely exist for other populations (i.e., endangered species). 

As technology advances and analyses begin to focus on fine-
scale movement and habitat selection, intensive sampling regimes 
are more necessary. Because of large error rates associated with in-
frequent sampling, misrepresented home range estimations could 
result in erroneous inferences. Critical errors can be avoided by 

Figure 4. Changes in average under- and overestimation error rates for kernel home range estimates 
as sampling intensity decreased for 14 female white-tailed deer at Chesapeake Farms, Maryland, 
and the Great Cypress Swamp, Delaware, 2006–2007. The x-axis represents increasing time intervals 
between locations. Error bars denote 95% confidence intervals.
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Figure 4. Changes in average under- and overestimation error rates for kernel home range 38 

estimates as sampling intensity decreased for 14 female white-tailed deer at Chesapeake Farms, 39 

Maryland, and the Great Cypress Swamp, Delaware, 2006–2007. The x-axis represents 40 

increasing time intervals between locations.  Error bars denote 95% confidence intervals. 41 

 42 

Figure 3. Average locational errors in (a) MCP home range estimates and (b) kernel home range estimates according to intensity of sampling for 14 female white-tailed deer at Chesapeake Farms, 
Maryland, and the Great Cypress Swamp, Delaware, 2006–2007. The x-axis represents increasing time intervals between locations; average % error is relative to the 60 minutes between points 
sampling rate. Error bars denote 95% confidence intervals.
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considering study objectives when choosing a sampling regime. 
However, we recommend that the most intensive sampling regime 
be used whenever possible, as higher sampling rates allow home 
ranges to be described more precisely.
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